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We develop a critical finite-force-range scaling theory for D-dimensional scalar ¢" field theories that is
based on a scaling ansatz equivalent to a Ginzburg criterion. To investigate its relationship to other
scaling theories we derive equivalent results from renormalization groups and from finite-size crossover
scaling for systems with weak long-range forces. By comparing our finite-range scaling relations with
finite-size scaling relations for hypercylindrical systems above the upper critical dimension D, we arrive
at a criterion of critical equivalence that provides an asymptotic mapping between the two kinds of sys-
tems. We apply our scaling relations to a ¢* Ginzburg-Landau Hamiltonian, to the one-dimensional Kac
model with exponentially decaying interactions, and to the N X « quasi-one-dimensional Ising (Q1DI)
model, in which each spin interacts with O (N) others. Near the Gaussian mean-field critical point the
Ginzburg-Landau Hamiltonians for all three models become identical, but for the Q1DI model this re-
quires a length rescaling. For the Kac model the resulting scaling relations are those of a D =1 quartic
field theory, and for the Q1DI model they are those of a cylindrical Ising system above D.. Results of
specialized numerical scaling techniques applied to transfer-matrix calculations for the Q1DI model with
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N <1024 strongly support our theoretically obtained scaling relations.

PACS number(s): 05.70.Jk, 64.60.Fr, 05.50.+q, 02.30.Lt

I. INTRODUCTION

A number of physical systems display, for all practical
purposes, mean-field critical behavior. Generally these
are systems in which the interactions extend over dis-
tances much longer than the microscopic length scales.
Examples include superconductors [1,2], magnets and
binary mixtures with large but finite interaction ranges
[3], and polymer mixtures with large but finite chain
lengths [3-5]. It has long been known from theoretical
arguments that models with weak, long-range interac-
tions approach classical mean-field behavior as the in-
teraction range approaches infinity while the interaction
strength goes to zero [6-8]. In some such models
renormalization-group calculations have indicated the
presence of a “van der Waals” fixed point [9-12].
Several workers have proposed that the interaction range
may be used as a finite parameter, in terms of which a
phenomenological renormalization procedure valid near
this mean-field critical point could be developed in analo-
gy with the well-established finite-size scaling method

47

[13-15]. Earlier studies along these lines concentrated
on hypercubic systems in which all the particles interact
equally strongly, and in which the finite scaling parame-
ter is the total particle number [16,17]. Models that have
more recently been investigated from this point of view
include Ising chains with algebraically [18,19] or ex-
ponentially [20] decaying interactions.

The Kac model [7,21,22] is an Ising chain with ex-
ponentially decaying ferromagnetic interactions. Recent-
ly Privman compared its finite-range scaling behavior
with the finite-size scaling of cylindrical Ising models
above four dimensions [20]. He observed that whereas
the critical exponents for both models take their classical
values, and the scaling behaviors of the singular parts of
their free energies are also identical, their correlation
lengths scale differently with the interaction range. Part
of the present paper is devoted to further elucidation of
these results.

The outline of the remainder of this paper is as follows.
In Sec. II we derive critical scaling relations for a general
D-dimensional scalar ¢" field theory in terms of its in-
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teraction range, based on a scaling ansatz which we find
is equivalent to a Ginzburg criterion [1-3,23]. By com-
paring these relations to finite-size scaling results for
LP DP'x D" “hypercylindrical” systems above their
upper critical dimension we identify a condition of criti-
cal equivalence, under which the two kinds of systems can
be asymptotically mapped onto one another at the mean-
field critical point. In Sec. III these scaling relations are
applied to three specific examples: a standard quartic
Ginzburg-Landau (GL) Hamiltonian [2], the Kac model,
and a particular long-range Ising chain system, the
quasi-one-dimensional Ising (Q1DI) model [24-27]. We
find the scaling relations for the Kac model to be identi-
cal to those for a one-dimensional Gaussian quartic field
theory with weak long-range interactions, in agreement
with Privman’s conclusions [20], whereas the scaling rela-
tions for the Q1DI model agree with those expected for a
cylindrical Ising system above its upper critical dimen-
sion [15]. These comparisons provide a specific example
of the critical-equivalence mapping introduced in Sec. II.
In Sec. IV we present numerical transfer-matrix results
for the Q1DI model that strongly support the scaling re-
lations derived in Sec. III. A method for filtering out
corrections to scaling was developed, and a specialized
convergence acceleration algorithm was used to obtain
the highly precise numerical results.

The ambiguity of the notion of “length” in mean-field-
like models is emphasized in some of the earlier treat-
ments [16,17] of finite-range-scaling concepts. These
treatments are discussed in Sec. V. The several ways in
which finite-range scaling has been introduced indicate
that it may be derived without relying on analogy with
finite-size scaling. In this section we show that this is
indeed the case by deriving scaling relations equivalent to
those we obtained in Sec. II both from critical finite-size
crossover scaling relations [5] and from renormalization-
group calculations [9-11]. In Sec. VI we summarize our
conclusions and discuss applications of the critical-

equivalence mapping. We find a specific asymptotic map-
ping between a D-dimensional field theory and the Q1DI
model, and we briefly discuss an application to the study
of chain-length scaling in polymer blends [4,5].

II. FINITE-RANGE SCALING OF A ¢" FIELD THEORY

We begin our study by developing a finite-range scaling
(FRS) procedure for a general ¢” field theory with a quad-
ratic gradient term and interactions of range 7, de-
scribed by the GL Hamiltonian [2]

:_l_ D.ri1qp2 2
Hy KT fnd r[z RNV +V, ($,1,h)] . 1

Here D is the spatial dimensionality, ) is the system
volume, V is the D-dimensional gradient, T is the abso-
lute temperature, and K is a constant. The local effective
potential is

n—2

(n_l)(n—l)/('l‘z)h(t’ 2)

Vgt )= =114+ 47—

where the coefficients of the terms linear and quadratic in
¢ are the “field” and “‘temperature” variables 4 and ¢, re-
spectively. All quantities in Eqgs. (1) and (2) are dimen-
sionless. The partition function Z® is given as the func-
tional integral

zo=c [Dge """, 3)
where the constant C contains the appropriate normaliza-
tion factors.

The functional minimization required to obtain the
equilibrium partition function leads by standard varia-
tional calculus to the Euler-Lagrange equation

P2yl n—1_ n—2
ﬁv"s t¢+¢ (n_l)(n—l)/(n—Z)

h=0, (4)

whose uniform equilibrium solution is the order parame-
ter,

for t >0, h <<tn—D/n=2)

( lgfn—_%)/(nﬂ)hltl‘7 for t <0, h << |¢|(n~D/tn=2)
n—
_ =)D s —
o(t,h)= Wk " for t=0
, 1 L,
Bn)
t +(n_1)(n—1)/(n—2)ht !

where the critical exponents all take their mean-field
values,

7‘7:7‘7’:1 s (63.)
8(n)=n—1, (6b)
= 1

= —_— 6
B(n) — (6¢)

The coefficients in V,(¢,¢,h) of Eq. (2) are chosen so that
|$(1,0)|=1 for n > 2, and also that for ¢ >0 the stationar-
ity condition d¥ /d¢ =0 has exactly one real solution for

[

|h|> hsp=t‘" —1/(n=2) the mean-field “spinodal” field.

To obtain the correlation length £ in the Gaussian ap-
proximation, which by the Ginzburg criterion becomes
exact in the limit R-—>o [2], we consider
#(r)=¢[1+u(r)]. Here u(r) is a Gaussian random field
with (u(r))=0 that satisfies the Euler-Lagrange equa-
tion,

[—RV?—t+(n—1)¢" Ju(r)=0, )
whose Laplace transform yields

E2=R"Y(n—1)¢p" " 2—1]. (8)
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Together with Eq. (5) for ¢ this yields the scaling relation
E=R|t|"VA(h|t] ™) )

with the mean-field correlation-length and field-scaling
exponents

v=1, (10a)
— ~ n—1
A(n)= +y=—.

(n)=pB(n)+y w2
[The scaling function A(&) is different for £ >0 and ¢ <0.]

The singular part of the free-energy density is
F=Q '[#,(¢(r))—#,($)]. Expanding V,(é(r)) to
second order in u and observing that integrals of odd
powers of u vanish, one obtains

(10b)

_7{2_2 —2
F=——(%<—§,——~fnd’”r[%§2(Vu P41u?] . (11)
The gradient term £%(Vu )? is of order unity on average,
so the behavior of the integral is determined by the mag-
nitude of the Gaussian fluctuations u2. If D is above the
upper critical dimension D,, these are always of order
unity or less [2]. For D <D, the fluctuations are of order
unity if the Ginzburg criterion [1-3,23] is satisfied, i.e., if
|t|/Z>0(1), where the Ginzburg parameter
Z~RP/MP7DP) s the size of the nonclassical critical
region [2]. In the limit 2 — oo the Ginzburg criterion is
satisfied for all 15=0. Thus, both for D <D, and D > D,
the integral in Eq. (11) is proportional to {2, so that

272D -2
A (12)
é—D
We do not consider the special case D =D, for which
logarithmic corrections may be present [15].

In analogy with the standard finite-size scaling (FSS)
result for the relation between the free-energy density and
the correlation length in D-dimensional cubic systems
[15], we take as our FRS ansatz that

F~g P, (13)

A discussion of the relations of this scaling ansatz to oth-
er finite-range and finite-size scaling hypotheses is given
in Sec. V. In that section we also show how the scaling
relations derived below alternatively can be obtained
from renormalization-group results [9-11].

Combining Egs. (5) and (9) for ¢ and £ with Egs. (12)
and (13), we obtain, both for ¢t >0 and ¢ <O, the field re-
scalings

—D/{¥[D, (n—D]}

[t| ~R , (14a)
Il NQ—DZ(n)/{V(DC(n)-D]} , (14b)
with the n-dependent upper critical dimension
2n
Dc(n)zm . (14¢)

For 1<D <D_.(n) these relations are equivalent to the
Ginzburg criterion with v=%=1. The resulting FRS re-
lations for F and £ are
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F=7{—DDr(n)/[Dc(n)—D]q)(T’é_) , (15)
é_:ﬁbc(n)/[Dc(n)—D]E(T,é_) , (15b)

with the scaling variables
= ‘tW{D/W[Dc("’—DN ’ (15¢)
§=|h|7fb&")/ww‘(")_nn ‘ (15d)

In their studies of finite-size scaling for general m-
vector models in a “hypercylindrical” L?~P?'X o ?
geometry with D > D, Singh and Pathria [28,29] obtain a
scaling relation for the correlation length f near criticali-
ty and in zero external field. (The caret is introduced in
our notation for the correlation length in the hyper-
cylindrical geometry for reasons that will be made clear
below.) This relation can be written as

A~ (D—D")/[D (n)—D']a (D=D"/{¥ D, (n)—D'}}

E=L (lt|lL ),  (16)

and has been shown to agree with explicit results for a
number of different models with O(m) symmetry, includ-
ing the Ising (m =1) model [30], general O(m) models
with m =2 [31,32], and the spherical (m — o) model
[29,33,34].

Since Egs. (15a)-(15d) and Eq. (16) represent the scal-
ing behavior of two different systems that both asymptot-
ically approach mean-field critical behavior, it seems nat-
ural to seek a mapping such that critical scaling relations
derived for one system can be applied to the other. We
therefore propose as a criterion of critical equivalence
that the singular parts of the correlation lengths and of
the free-energy densities of the two systems must be
asymptotically proportional. In order to implement this
mapping we define the range-normalized correlation
length for the field theory, £~&/R, and we require the
critical scaling relations for the two systems to agree with
one another. This yields a relation between the interac-
tion range 7 in the D-dimensional field theory and the
length L in the hypercylindrical system with infinite sys-
tem size in D’ dimensions:

D/[D.(m=D] _  (D=D"/[D(m=D"] _ 1/[D(m=D']

R L N , (17

where N~L? 2 is the hypercylinder cross section.
Thus the scaling relations of Egs. (15a)-(15d) give

F=LM(D_D')D‘(")/{DC(")MD']d)(T,é)
:N—Dc(n)/[Dc(m—D’]q)(T’é) , (18a)
g\__:L(D—D')/[Dc(n)—D’]@(T’g)
__:NV[DC‘")'D']@(T’(;) , (18b)
T___ltlL(D—D')/w[Dc(n)—D’]}
:IIINVMDCW»D']! ’ (18¢)
é_:thlL&(n)(D~D')/MD¢(">‘D'”
:lh|NB(n)/tV[Dc(n)“D']( ) (18d)
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II1. THREE SPECIFIC EXAMPLES

In this section we apply the FRS relations obtained in
Sec. II to three different models that can be mapped onto
a ¢* field theory: the standard GL Hamiltonian for a
second-order phase transition, the Kac model, and the
Q1DI model.

A. Standard ¢* Ginzburg-Landau Hamiltonian

The conventional ¢* GL Hamiltonian [2,10,11,35] for
the critical properties of a system with interaction range
R in a D-dimensional volume £ is

— TC D 2
Ho= [ dr v

T
1R*(Vy)y—1 ‘1—?:

L1K o H

i VT (19)

¥

In Eq. (19) T is the temperature in energy units and T, is
the mean-field critical temperature. The external field H
and the positive nonlinearity parameter K also have di-
mensions of energy, whereas both R and r are dimension-
less, expressed in units of a fixed lattice constant.

In order to facilitate the application of the FRS formal-
ism developed in Sec. II, we express all energies in units
of T, by redefining T/T,—7, K/T.—K, and
H/T,—H. The zero-temperature order parameter is
lho| =K ~172, and the zero-temperature spinodal field, for
which both the first and second derivatives of the in-
tegrand in #£gp vanish at the same value of ¢, is

Hg, =(2/3V'3)K ~1/2. In terms of the normalized vari-
ables ¢=1/|¢y| and h =H /H spo the GL Hamiltonian of
Eqg. (19) becomes

7{GL=-I%deDr[§R2(V¢)2+ Vi,e,h)], (20
where

Vi t,h)=—1t¢*+1¢*—(2/3V3)h¢ . 21
Here t=(1—T), and V,(¢,t,h) is the local temperature-

dependent effective potential of Eq. (2) with n =4.

By comparing Eqgs. (20) and (21) with Egs. (1) and (2),
one sees that this case corresponds to the D-dimensional
¢" field theory of Sec. II with n =4 and # =R. Thus Eqgs.
(15a)—(15d) become

F=R ~*P/4=Digp(r ¢) (22a)
E=RYUD=(r,8), (22b)
T=[t|R2P/4=D) (22¢)
§=Ih|R3D/(4—D) . (22d)

B. Kac model

The Kac model [7] consists of a chain of Ising spins
s; =11 with exponentially decaying ferromagnetic pair
interactions. It is described by the reduced Hamiltonian
[7,21]

@K———Es f‘/R—wzs ) (23)

2RT;

Closely following Kac’s original treatment [7], we now
derive the GL Hamiltonian for this model near its critical
point.

The partition function for a chain of I spins with
periodic boundary conditions (I +1=1) can be written,
in the limit of large I, as

ZI=(2e—J/(2RT))1f +°°d1x hx,)

I
X [TH R (xisxi 4 DR (X 41)
i=1
(24a)
where
J 172 H
h(x)=(2me*")~4cosh!/? Ve +—T—], (24b)
and the transfer kernel is
7{R(xy)=e“2Re_“/2)UR(X)
)2
.4smh(_11{ 1/)2 SU2TD
[47 sinh(R )]
in which
) 172 H
Ug(x)=1+ tanh 2 _ | ~Incosh RT +—T—
(244)

(Note that the integration variables x;, which play the
role of a “local order parameter’ are continuous effective
molecular fields, regardless of the value of R [7,35].) The
partition function can be rewritten as

2e——n/er) |

z'= [4msinh(R ~1)]1/2
f “dlx h(xpe KUV, 0, 25a)
where the GL Hamlltoman is
Hl(x))= 3 Lx—‘}“fﬂwwk(x,-) (25b)
/=1 | 4sinh(R ™)

The critical temperature for this model is T.=2J [7].
Again, we express T and H in units of T, and expand
Ug(x) for small x, small H /T, small ¢, and large R. The
resulting quartic potential yields the zero-temperature or-
der parameter |xo/=V6R and the spinodal field
H =3 1.  Changing variables to ¢=x/|x,] and
h=H /Hgy, and taking the spatial continuum limit
>, — f (’)dr we obtain the continuous GL Hamiltonian

for the Kac model,

ﬂKz%foIdr[%Rz(V¢)2+V4(¢,t,h)]- (26)
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The effective Hamiltonian #y of Eq. (26) is identical to
the quartic #; of Eq. (20) with K =1 and D =1. There-
fore the Kac model has the same scaling behavior near
criticality as a one-dimensional quartic field theory with
interaction range R. (A similar derivation of a GL Ham-
iltonian for a D-dimensional Ising spin system is con-

tained in Appendix B of Ref. [35]) Thus Egs.
(15a)—(15d) become
F=R *3®(1,f), (27a)
E=RYE(1,0), (27b)
r=[t|R?", (27¢)
=|hnIR , (27d)

in agreement with Privman’s results [20].

C. Q1DI model

The Q1DI model, which has been used in transfer-
matrix studies of metastability [24-27], consists of a
one-dimensional chain of I subsystems, each of which
contains N Ising spins s, ; =+ 1. Each spin interacts with
each of the 2N spins in the adjoining subsystems with in-
teraction constant J, /N50. Each spin can also interact
with each of the N —1 other spins in its own subsystem
with interaction constant J, /N. The reduced Hamiltoni-
an is

N N,
T Zmm 2T

NH [ J,
__2
=1

Ho=

m;+—= 3T ° (28)

which contains only the subsystem magnetizations

m;=N"'SN_ s, ;- The partition function can be written
[24,25] as
Zi=3 ¢ Malmb (292)
Im,'l
where
I
WQ: ZﬂQ(m,-,m,»+1)
i=1
and the local potential is
Unim.) NQ2J,+J;) i N
ymj))=—————m/—In
2T ' N m,+1)
NH Ja
- - 2
T m;+ 3T (29¢)

with the binomial coefficient giving the multiplicity of a
state of magnetization m;. Expanding Uy for small m,,
small H /T, and large N, we find T,=2J,+J,. Express-
ing T and H in units of T, as before, and expanding to

lowest order in ¢, we obtain a potential quartic in m,
which yields the zero- temperature order parameter
Imo|=v"3 and spinodal field H,,=2. Changing vari-
ables to ¢=m /|m,| and h = =H /H,, and removing con-
stant terms, we find that Uy(m)=(3N/T)V,($,t,h),
where V,(¢,t,h) is the effective quartic potential of Eq.
(21). In taking the continuum limit in the transfer direc-
tion we allow an N-dependent scaling factor a(N) for
lengths in this direction so that (¢, ; , —#;)*—a%(N)(V¢)?
and 31_,—[1/a(N)] [ {*Mdr. The resulting GL Hamil-
tonian is

__3N Ia(N)
R Ta(N) Jo

dr[L(1—T,)aX(N)(Ve)

+ V4, t,h)], (30

where J,=J, /T..

The effective Hamiltonian #, of Eq. (30) can be made
identical to #, of Eq. (1) with n =4, K=1, D=1, and
the interaction range & =(1/v2)(1 —.7;)1/2N by choos-
ing a(N)=N. The correlation length &, in units of the
original lattice constant, as it is usually calculated from
the transfer-matrix spectrum [36], is therefore related to
the correlation length § of the corresponding field theory
as E=¢&/N. This is in agreement with the definition
E~E/R given in our discussion of the critical-
equivalence mapping in Sec. II. Thus from Egs.
(15a)-(15d) we have

F=(1—7J,) 23N *3@(r,¢), (31a)
E=(1—J,*N'E(r,¢), (31b)
r=1t|(1=7J,)3N?3 | (31c)

=|hl(1=T,)'°N . (31d)

In addition to the finite-range scaling, these relations also
predict the dependence of the dominant eigenvalues of
the transfer matrix on the intrasubsystem interaction J,.
As pointed out by Privman [20], this N-scaling behavior
is in agreement with predictions for an L? 7!X o cylin-
drical Ising system of dimension D > D, and cross section
N~LP~1 Equations (31a)-(31d) are analogous to Egs.
(18a)-(18d) and represent a special case of the critical-
equivalence mapping connecting the bulk FRS of a D-
dimensional field theory and the FSS of a hypercylinder
above D, which we discussed at the end of Sec. II.

IV. NUMERICAL TRANSFER-MATRIX RESULTS
FOR THE Q1DI MODEL

In this section we test by numerical transfer-matrix
calculations our scaling predictions, Egs. (31a)-(31d), for
the N X o QI1DI model. This test is performed by insert-
ing in Egs. (15a)-(15d) the appropriate values of 7%, D,
and the length rescaling factor a given at the end of Sec.
III C, while leaving D_, v, and A as ‘“‘unknown” parame-
ters to be numerically determined and compared with the
predicted mean-field values, D.(4)=4, ¥=1, and
A(4)=3. The predicted scaling relations in explicit form
are
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+ \—D./[2D,—1]  —D_/[D,—1]

Fy=(1—J,) N O(7y,8x), (32a)

Ey=(1—J,)P B P DINI P e ey (32b)

with the scaling variables
TN=It|(1_jz)1/[Zv(D;n]Nl/[v(Dc—l)} ’ (32¢)
gN:|h|(1___.—I-z)A/[ZV(DC-1)]NA/[V(DC—1)] ’ (32d)

where the N-dependence has been explicitly emphasized
through subscripts. (The V'2 factors from 7 have been
absorbed in the scaling functions.) As discussed in detail
below, we find that the resulting estimates are consistent
to high precision with the predicted mean-field values, as
well as with each other.

Numerical values for Fy and &y were obtained from a
standard transfer-matrix calculation [36] analogous to
those performed in Refs. [24-27]. The partition function
of Eq. (29a) can be written as Z4=Tr{T%}, where the
(N +1)X(N +1) transfer matrix Ty is defined by its ma-
trix elements, (m,|Tylm, ) =exp] —Ho(m;,m; ;)]
and #qo(m;,m; ) is identical to #o(m;,m; ) of Eq.
(29b), except that it is symmetrized with respect to m;
and m;,,; for computational convenience. The rank of
Ty is N+1 for J, <1, and it is 1 for J,=1. In the usual
fashion Fy and &y are given in the limit J— o by the
two largest eigenvalues of Ty, A, and A;, as
FiM=—(T/N)lnA, and &y=[In(A,/|A[)]"!. The
transfer-matrix free energy FoM contains a regular part
that must be removed in order to isolate the singular part
Fy. The transfer matrix was computed for finite subsys-
tems up to N =1024 at the critical point, T,=2J,+J,
and h =0, and then was tridiagonalized by the House-
holder method. The dominant eigenvalues were iterative-
ly extracted from the tridiagonal matrix. All computa-
tions were performed in 64-bit precision on a Cray Y-
MP/432 supercomputer in approximately five hours of
CPU time. The high precision in the results was deemed
sufficient for the present study, although greater precision
may be achieved by adding results from system sizes as
large as 2048 at a cost of about 20 CPU hours or by di-
agonalizing the transfer matrix in 128-bit precision at a
cost of about 40 CPU hours.

For each quantity Py for which the bulk (N-scaling)
exponent was sought, a sequence of values {Py}y=, was
generated from transfer-matrix calculations for N X o
systems with J » =0 fixed. Given such a sequence, a func-
tion

Wy ({Py})=(In2) " 'In(P,y /Py) , (33)

may be constructed in order to isolate the bulk exponent.
For a sequence { Py} that is expected to represent a series
of the form

Py=AN"+ A N+ 4,N*+ --- , (34)

where wy,>w,> - - -, the function Wy ({Py}) provides

(l)l"(llo)

Two methods are used in this work to improve the con-
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vergence with N of the sequence { Wy}. Both methods
are discussed briefly below, and further detail is provided
elsewhere [37].

The first method is a transformation on {Py} that
filters out corrections to scaling. If {Py} is a data se-
quence whose behavior is described by Eq. (34), a se-
quence { P}, } with half as many elements as { Py} may be
constructed by assigning

Py=2"“P,y—Py , (36)
so that if o' =w,+8, for |§,| << 1, then
Py=AN®+ AN+ AN+ -+, 37

where 47 =0(8;). The function Wy is then calculated
as in Eq. (33) with Py instead of Py. Successive applica-
tions of the filter to lower-order terms generates se-
quences { P\’} of the form

PY'=APN“+ 3 AN +O(N"T"), (38)
i=1
in which 4/'=0(8;) where 1 <i <j.

If we suppose that coefficient 4, in Eq. (34) is not con-
stant, but is instead O((InN)?), then 47,=0((InN )~ 1),
so that the convergence of { Wy} would not improve as a
result of subsequently filtering lower-order terms. On the
other hand, if each A; is constant, then the convergence
of Wy can improve exponentially as the filter is applied
to each successive correction term. The successive filter-
ing process continues either until the remaining correc-
tions to scaling are comparable either with one or more
of the terms 4N, or with the numerical noise in Py,
or until the successive sequences reduce to the two points
required to compute W,. The effects of this filtering are
illustrated with our data in Figs. 1 and 2.

The second method used to accelerate the sequence
{Wy] is a transformation that has been successful in ac-
celerating various types of logarithmically convergent se-
quences with very few available elements [38]. This is the
Levin u transform, which generates a family of sequences
(W, JNZF, k=0,1,2,...,N—1, whose last elements
are estimates for limy _, , Wy:

CAMIN=k DT Wy AW )]
Sl AN —k+ 172 /AWy i -]

»

(39a)

where

Sy for k=0

AF TSy ) —AFTN(Sy) for k=1, (39%)

AKSy)=
and we take W,=0. If the numerical noise in { Wy} is
small, the estimates W, y_, reach a plateau where they
vary little with k, and the values on this plateau are aver-
aged to give a final estimate for the bulk exponent.

Filters such as that in Eq. (36) were applied to each
physical variable obtained from the transfer-matrix cal-
culation in order to remove terms of order N ",
m=1,2,3,..., where o, is the bulk exponent sought.
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FIG. 1. The agreement between the finite-N estimates
Wy({€x}) to the bulk exponent of £y and the value () predict-
ed by mean-field theory, given in significant digits. The thin
solid line represents estimates from the raw transfer-matrix
data. The long-dashed, short-dashed, dot-dashed, and thick
solid lines represent the same data after filters have been applied
successively to {£y} to remove terms of order N° N '/3

N2 and N7, respectively. (Note: the spikes that appear on
these curves are a result of the estimates crossing the mean-field
value, which is due to the presence of alternating terms.) The
points “X” indicate the agreement for the u-transform esti-
mates W, y_, for limy_, Wy, averaged over four subsets of
the final sequence. The iteration index k is shown on the top
axis, and the ends of the error bars opposite the points indicate
the significant digits of estimated error. The horizontal dotted
line serves as a guide to the eye, linking the kK =0 estimate to the
last element in the final sequence.

Iteration k
8 T I T T T

=}
'S

(]
T
—x

Significant digits

A | A B B

Element N

FIG. 2. The agreement between the finite-N estimates
Wx({Fy}) to the bulk exponent of Fy and the value (—$%) pre-
dicted by mean-field theory, given in significant digits. This
figure is analogous to Fig. 1. The long-dashed, short-dashed,
dot-dashed, thick dashed, and thick solid lines represent the
transfer-matrix data after filters have been applied successively
to remove terms of order N 33, N=2, N=7/3, N=83 and N3,
respectively. The points “X” indicate the agreement for the u-
transform estimates W, y_, for limy_, , Wy, calculated from
the final sequence.
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The process continued until the error estimates for the
bulk exponents stopped decreasing. Up to that point, the
convergence of { Wy} improved exponentially with each
stage of filtering, indicating that the dominant correc-
tions to scaling are extremely close to the orders given
above, and that there are no logarithmic corrections
apart from the bulk term. When the bulk term was
filtered, { Wy} converged to the first correction term, in-
dicating that even the bulk term does not contain loga-
rithmic corrections. This agrees with observations in ear-
lier FRS studies [16—19], and represents a marked con-
trast to the situation in finite-size scaling of short-range
force systems at D, [15], as discussed in Sec. V. Where
sufficiently precise numerical data were available, the se-
quences { Wy} were extrapolated by the u transform. In
cases where more than eight elements were available after
filtering, the sequences were divided into ‘“independent”
eight-element subsequences, and the results of the u
transform were averaged over these subsequences.

The estimates Wy ({£y}) for the bulk exponent of the
correlation length of Eq. (32b) with J, =0 were calculated
using the filter described above to remove terms to
O(N™!). These estimates were extrapolated by the u
transform to 0.333 333 3(15), giving D,=4.000000(14),
in excellent agreement with the predicted mean-field
value D.(4)=4. The effects on W of successive filtering
of {£€y} and the further improvement resulting from the
extrapolation are illustrated in Fig. 1. The numerical
values are shown, together with our complete N-scaling
results, in Tables I and II. To test the consistency of the
bulk exponent estimate for &, ~» as well as the predicted re-
lation between the N-dependence of Fy and 3 ~» the bulk
exponent of the singular free-energy density Fy of Eq.
(32b) was estimated. The first two terms of the non-
singular part, a constant —In2 and a term of O(N 1),
were removed from the transfer-matrix free energy FaM
in order to isolate the bulk term of the singular part Fy.
The estimates Wy ({Fy}) for the bulk exponent were cal-
culated with terms to O(N —3) filtered. The resulting se-
quence was extrapolated to —1.33334(3), giving
D.=3.9999(2), in very good agreement with the result
obtained from E ~- The results of successive filtering and
extrapolation on Wy({Fy}) are shown in Fig. 2. Both
Figs. 1 and 2 clearly show the exponential improvement
of the estimates brought about by filtering.

Next, estimates were obtained for the scaling ex-
ponents ’y_l and A/v in the usual way [39] from deriva-
tives of £, and Fy. Differentiating both sides of Eq. (32b)
with respect to ¢ once or with respect to 4 twice, one finds
expressions that can be tested numerically:

3En(1,h) —(1-7, Bty H/2D, = 1)
at
y7! —
x N PeTe ey, (40a)
3%y (t,h) ~ (D, +2A/%)/[2(D,~1)]
SN (17,
oh?
XN(1+2A/V)/(DC-l)gh('TN,gN) ) (40b)

1

The scaling exponents v~ ' and A /v were obtained from



CRITICAL FINITE-RANGE SCALING IN SCALAR-FIELD ...

1481

TABLE 1. Estimates of the bulk (N-scaling) exponents for the physical variables of Egs. (32a), (32b),
and (40a)—-(41b). Each power of N filtered is indicated, as is the use of the u transform. Each bulk ex-
ponent is shown in terms of the mean-field scaling exponents with its predicted value.

Physical Mean-field Powers of N Calculated
variable bulk exponent filtered u transform bulk exponent
~ 1 _
En -Bc-a)ﬁ_—l—% 0,—1,—3%,—1 yes 0.333333 3(15)
D (4)
Fy _7)_(‘4—)::_% 0, 1,*%,—2,—%,—%,"3 yes —1.333 34(3)
3y 1+v a2 .
—*a’t“ m— 3,3,0,—3‘,“?,—1,'—3 yes 1.000005(12)
%€, A4) /v
af’j AT s 2,51 no 2.334(10)
2v "'—D_(4) —
(cu)n —T(‘*ﬂ—_l—‘ —H3 no 0.002(3)
2A(4)/v—D.(4) 5 . .
(X7)n . D—(4)_—1 =% ?70’_? no 0.666 6(2)

the sequences {d&y /3t} and {3%*Ey /dh?} using these re-
lations with D.=4 as verified above. The exponents
found were also in good agreement with the expected
mean-field values and are shown in Tables I and II. In
the case of the h derivative numerical noise, attributable
to roundoff error in the transfer-matrix calculation, pre-
cluded extrapolation. The estimate for the bulk exponent
in this case was computed by averaging over the latter
half of the finite-NV estimates W, .

The scaling relation (32a) for Fy can be differentiated
with respect to ¢ twice or with respect to A twice to ob-
tain a relation for the specific heat or for the susceptibili-
ty, respectively:

~ (2v7!'=D )y/[2D —1)
(cy)y=(1—T,) ~P/PD

-1 —
—-D,)/(D,

XN(ZV 1)@(TNs§N) ’ (413.)
ey =(1—7, )(ZA/v—Dc)/[Z(DC—l)]
XN(ZA/V_D°)/(D”_UX(TN,QV) . (41b)

The exponents v~ ! and A/v were calculated from these

TABLE II. Estimates of the scaling exponents as determined
from the calculated bulk exponents shown in Table I. The exact
mean-field values for the scaling exponents are also shown.

Scaling Mean-field Physical Calculated
exponent value variable value
D, D.(4)=4 Ev 4.000 000(14)
Fy 3.9999(2)
NS
vl vol=2 % 2.00001(4)
(CH ), 2.000 3(5)
. FEy
A/v A(4)/v=3 an? 3.001(15)
(X1 2.9999(3)

relations as well, again using D, =4. As can be seen in
Tables I and II, the exponents found were in good agree-
ment with the results above, as well as with the expected
mean-field values. In both cases numerical noise was sub-
stantial, so the bulk exponents were calculated by averag-
ing over the latter half of the finite-V estimates Wy. The
estimates Wx({(x7)y}) with {(xr)y}] filtered to
O(N~'/3) are shown in Fig. 3, giving an example of esti-
mates that could not be extrapolated.

To examine the J, dependence of the quantities £y,
Fy, Ty, and §y, two sets of finite-N data were calculated.
For each quantity Py, a set {Py} was calculated with
J,=0, and a set {Pj} was calculated with J,=1. If the
bulk term in P, is

PN~(1_j2)vao ,

N
&

0.672 T T T T

0.670

[

0.668

T

0.666

Wy(tx)nd)

0.664

0.662

P B P

b—

© AR RARANREARE RAREE RN R

0.660

[~
o

FIG. 3. The finite-N estimates Wy({(x7)x}) to the bulk ex-
ponent of (x 1)y, after filtering of terms of order N'/3, N° and
N~1/3 giving an example of the substantial numerical noise
present in some of the data obtained. These estimates could not
be extrapolated, so an average was taken over the latter half of
the data. The cutoff is indicated by the vertical dotted line. The
horizontal dashed line and error bar indicate the average esti-
mate of 0.666 6(2) with its error. This estimate is very close to
the mean-field theoretical prediction of Z.
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TABLE III. Estimates for the (1—J,) exponents for the physical variables of Egs. (32a), (32b), (40a),
and (41b). Each power of N filtered is indicated as is the use of the u transform. Each exponent is
shown in terms of the mean-field scaling exponents with its predicted value.

Physical Mean-field Powers of N Calculated
variable (1—7J,) exponent filtered u transform (1—7J,) exponent
R D(4) |
I S — 0,_L,_£,_1,_1,_i X
En D —1] 3 5 3 yes 0.666 67(3)
F D&, 0,—1,—%,—2,—1 s —0.666 69(7)
N Z[DC(4)_1] 3 > ’ 3 > 3 ye .
déy D.(4)+v !
. =1 21l —1 —2 -1 -4 1.000002(13
ar 2(D.(4)—1] 303 373 3 yes 13
2A(4)/v—D,_(4)
. W 10,-1 no 0.333(6)

2[D,(4)—1]

then we expect Py =2"P} asymptotically. A function
Wy can be constructed in analogy with Eq. (33):

Wi({Py}, {P%})=n2) " 'In(Py /P}), (43)

which asymptotically approaches the exponent v for
(1—7,) in the scaling relation.

The estimates Wy({Ey},{E%]}) for the correlation
length were calculated with terms to O(N ~°73) filtered.
These estimates extrapolate by the u transform to
0.666 67(3), in very good agreement with the predicted
value of 2. These values are presented along with our
complete J,-scaling results in Tables III and IV. The es-
timates Wy({Fy},{Fx}) for the singular free energy
were calculated with terms to O (N ~7/3) filtered. The re-
sulting sequence was extrapolated by the u transform to
—0.666 69(7), again in good agreement with the predict-
ed value of —2. To test the J, dependence of the scaling
variables 7y and y, the (1—J,) exponents for d&y /3t
and (y;)y were estimated and compared with the result
for E ~ and Fy, respectively. As is shown in Tables III
and IV, these exponents agree very well with the mean-
field predictions. The fact that the J,-scaling exponents
of Fy and f n are found to be simply related by a change
of sign, whereas the N-scaling exponents are not,
confirms the correctness of the length rescaling used in
the derivation of the scaling relations for F and £ in Sec.
IIIC. A more detailed study of the critical finite-range
scaling for the Q1DI model, including corrections to scal-
ing, is reported elsewhere [37].

V. ALTERNATIVE APPROACHES
TO FINITE-RANGE SCALING

In this section we discuss several ways in which the
FRS ansatz of Eq. (13), or, equivalently, the scaling rela-
tions of Eqgs. (14a)—(15d), can be obtained. We also con-
sider the relationship of finite-range scaling to the tradi-
tional finite-size scaling method and to crossover scaling
[5] and renormalization-group results [9-11]. In addi-
tion, we discuss in more detail the possibility of logarith-
mic corrections to the FRS relations.

First we mention some different ways in which FRS
ideas have previously been discussed in the literature.

(1) In studies of infinitely correlated systems in which

neither length nor spatial dimensionality are well-defined
concepts, Botet et al. [16,17] introduced the concept of a

“coherence number” N~|t| " . By combining Egs.
(14a) and (15a) one finds that F ~! has the same t-scaling
behavior, and may thus be interpreted as a coherence
number, independently of D.

(2) For D=1, results analogous to those obtained in
Sec. IT were found by Uzelac and Glumac [18,19] in the
context of an Ising chain with algebraically decaying fer-
romagnetic interactions. Their approach was based on
an analogy with FSS assumptions.

(3) Privman’s results for the one-dimensional Kac mod-
el [20] were obtained by a rescaling of the Schrodinger
equation resulting from a Legendre transform of the in-
tegrand in Eq. (25a).

(4) If the numerator in F, as given in Eq. (12), is viewed
as the total free-energy cost of a critical fluctuation, as
suggested by Unger and Klein [40], then our scaling an-
satz becomes equivalent to a requirement that this cost
should be independent of the interaction range at the
mean-field critical point.

Among these four approaches to FRS, only the second
one makes an explicit appeal to the analogy with the usu-
al FSS formalism. The several ways in which the scaling
relations can be obtained indicate that mean-field FRS is
in fact not just a direct consequence of FSS. We provide
support for this conclusion by discussing next two
different approaches that lead to the same scaling rela-
tions as our present one.

For D >1 the infinite system has a finite-temperature
critical point even for finite-range interactions. In this
case the field rescalings, Eqs. (14a) and (14b), that result

TABLE IV. Estimates for the (1—J,) exponents for the scal-
ing variables 7y and {y. Exact mean-field predictions are also
shown.

Scaling Mean-field Calculated
variable (1—J,) exponent (1—J,) exponent

1 1

T —_—— = 0.33333(3)
N W[D,(4)—1]
A4) 1

—_— = 0.500(3)

b 29[D,(4)—1] °
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from our scaling ansatz are identical to the Ginzburg cri-
terion that ensures a ‘“‘safe” distance from the nontrivial
critical point of the finite-range system. The role of the
Ginzberg criterion in nucleation theory was discussed by
Binder [3], and recently Binder and Deutsch [5] have ex-
tended this discussion to consider finite-size crossover
scaling between nontrivial and mean-field critical behav-
ior in hypercubic systems with side length L and force
range A. Their approach is to eliminate the reduced
temperature from the order-parameter probability distri-
bution along the crossover line through the Ginzburg cri-
terion, as in our Eq. (14a), in order to obtain crossover
scaling relations for the order parameter and the suscep-
tibility in terms of L and 2. As an example of how our
FRS results can be obtained from their crossover scaling
relations we consider the order parameter, for which they
give the relation (generalized here to ¢" field theory)

( |¢| Y=L —B(n)D /[¥+2B(n)]

¥[D, (n)—D]D/[¥+2B(n)]

XJM(L RP)

D (n)/[D,(n)—D]

=L P"JULR ), (44)

where the second line is obtained by using Egs. (6a), (6c),
and (14c) for 7, B(n), and D_(n), respectively. To obtain
critical FRS from this result, we eliminate the system size
L through the finite-size scaling relation L ~§. The argu-
ment in J then yields £~%" "% "P] 'in agreement
with our Eq. (15b), and substitution of 72 into the prefac-
tor yields (|d| ym g PMPAPLITD] o atter result
can also be obtained from our Eq. (15a) by differentiation
with respect to h. Thus our critical finite-range scaling
relations can be obtained from crossover finite-size scal-
ing by simultaneously requiring both the crossover and
the critical scaling conditions to be satisfied. As noted by
Binder and Deutsch, finite-size crossover scaling is appl-
icable near the mean-field critical point, where hyperscal-
ing does not hold, because the correlation length § along
the crossover line is proportional to the thermal length
Iy =< (x/¢*)"/P [41,42].

Renormalization groups for systems with long-range
interactions have been studied in real space by Knops,

J

DD (n)/{¥[D (n)—D

F(h,t,8,)=(R"/R) Yr(R /7)

—D,(n)/{¥]D,(m)—D1}

E(h,t,8,)=(R"/R) EUR/R)

which are equivalent to our FRS scaling relations of Egs.
(15a)-(15d). In these calculations the nth-order non-
linearity, which is a dangerous irrelevant variable above
D, [30], was kept constant by a judicious choice of the
spin-rescaling parameter 7 in the RG. In the present
work this control is achieved by the scaling of the order
parameter on its zero-temperature value as discussed in
Sec. I1.

A question not discussed in detail in Sec. III is the pos-
sibility of logarithmic corrections to the FRS relations,
which are known to be present for the similar finite-size

~DA(n)/{¥[D.(n)—D]}

—DA(n)/{¥[D (n)—D]}

van Leeuwen, and Hemmer [9] and in momentum space
by Green [10] and Gunton and Yalabik [11]. These re-
normalization groups have a ‘“‘van der Waals” fixed point
with classical exponents, which becomes stable for per-
turbations away from infinite force range only for D > D,.
We now show that our FRS relations may be obtained
from the results of these renormalization-group (RG)
studies. We use a notation close to that of Knops, van
Leeuwen, and Hemmer, but we extend our discussion to
cover a general ¢” field theory, as done by Gunton and
Yalabik. For a GL Hamiltonian equivalent to that of Eq.
(1) one obtains the following scaling relations for the
singular free-energy density F, the correlation length &,
and the force range 52 under an RG transformation
which dilutes the degrees of freedom S by a factor
S'/§=1""

F(h,t,g,)=1"PF(\h, At 0,8,) , (45a)

&E(h,t,g,)=1&(Ah, Ayt A,8,) , (45b)

R=Az'R", (45¢)
where the eigenvalues are

A =1P70 (462)

A{y{:l(D/z)—T*I . (46b)

The crucial point of this RG calculation is to keep the
nonlinearity g, constant by choosing 7=D /n to yield
A,=1and

kl:lD(1_1/n)=lDB(n)/[T/Dc(n)] , (472)
M:lmpz/n)___lm[wc("” , (47b)
kﬁ:lD[(1/2)~(l/n)]_1:Iv[DC(n)hD}/[VDC(n)] , @7c)

where ¥, A(n), and D,(n) are given by Egs. (10a), (10b),
and (14c). The scaling relation Eq. (45c) for /& and the
explicit relation Eq. (47c) for its eigenvalue allow us to
eliminate / from the scaling relations for F and &, yielding

h’(ﬁ,/ﬁ)—p/w[uc(m—u]]

—D/(¥D,(n)— D]}

t,8,) » (48a)

h,(R'/R) ,8,) » (48b)

scaling of short-range systems at their upper critical di-
mension [15]. This point has been considered at length in
earlier work on FRS, both for the infinitely coordinated
models studied by Botet et al. [16,17], and for the one-
dimensional model with power-law interactions studied
by Glumac and Uzelac [18,19]. In all cases studied by
these authors, pure power-law scaling was observed nu-
merically to considerable accuracy, with no signs of loga-
rithmic corrections. For the infinitely coordinated Ising
model the magnetization was obtained analytically by
Botet and Jullien [17], verifying the absence of logarith-
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mic corrections in this special case. Logarithmic correc-
tions were also found to be absent in an infinite-range
mean-field percolation model studied by Privman and
Schulman [43]. As was shown numerically in Sec. IV, we
find that the result is the same for the Q1DI model: the
power-law FRS relations derived in Sec. IIIC were
verified to high numerical accuracy, and the exponential
improvement on the convergence of bulk exponent esti-
mates due to filtering of successive powers indicated that
no logarithmic corrections were present.

VI. DISCUSSION

In this paper we have derived critical scaling relations
for general D-dimensional ¢" scalar-field theories, and we
have shown that the scaling ansatz for the singular free-
energy density, on which this derivation is based, is
equivalent to a Ginzburg criterion. By comparing these
finite-range scaling relations to finite-size scaling results
for cylindrical systems with D > D_ we have identified a
condition of critical equivalence under which the two
kinds of systems can be asymptotically mapped onto one
another at the mean-field critical point. We have applied
these scaling relations to a standard ¢* GL Hamiltonian,
to the one-dimensional Kac model with exponentially de-
caying ferromagnetic interactions, and to the ferromag-
netic quasi-one-dimensional Ising (Q1DI) model. We find
that near the Gaussian mean-field critical point the
Ginzburg-Landau Hamiltonians for all three models be-
come identical. However, for the Q1DI model a length
rescaling is required to obtain this mapping, leading to
different scaling relations for the correlation lengths. The
scaling relations obtained for the Kac model are those of
a one-dimensional quartic field theory, whereas for the
Q1DI model they are those of a cylindrical Ising system
with D > D_, supporting our proposed criterion of critical
equivalence. We have shown further that our scaling re-
lations can also be obtained from critical finite-size cross-
over scaling [5] and from renormalization-group results
[9-11]. These findings give finite-range scaling a physical
basis separate from the simple analogy with finite-size
scaling.

We note that the critical-equivalence mapping intro-
duced in Sec. II can be used to relate the critical behavior
of a D-dimensional field theory with force range R to
that of the Q1DI model (D'=1, D > D,) with cross sec-
tion N, which has the advantage that it can be studied
easily by numerical transfer-matrix methods. The result-
ing mapping, obtained from Eq. (17), is

2 NPT DVID(D 1]

(49)
For D =1, such as in the Kac model, this gives the simple
mapping 2 ~ N, which was used in Sec. III. For a gen-
eral dimensionality D Eq. (49) can be interpreted as a
statement that the Q1DI model is critically equivalent
with either a field theory with D <D, and long-range in-
teractions, in which R is a monotonically increasing func-
tion of N, or a field theory with D =D, and interactions
of arbitrary range (R ~N9), or a field theory with D >D,
and short-range interactions, in which R is a monotoni-
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cally decreasing function of N. The latter case can be
viewed as an expression of the stability of the “van der
Waals” fixed point for systems with finite-range interac-
tions and D > D,. If the correspondence discussed above
is interpreted literally, the Q1DI model could possibly be
seen as representing transfer in a direction perpendicular
to the “surface” of a critical cluster in any of the critical-
ly equivalent D-dimensional models.

Our analytical results for the Q1DI model were
confirmed by high-precision numerical transfer-matrix
calculations obtained by specialized numerical scaling
techniques. These numerical results verified the absence
of logarithmic corrections, indicating a marked difference
of finite-range scaling from finite-size scaling of short-
range systems for D =D,. Further, if Eq. (49) for D=3 is
combined with the mapping of polymer blends of finite
chain length onto the three-dimensional Ising model with
long-range interactions, given by Binder and Deutsch
[4,5], a mapping is obtained which connects the critical
chain-length scaling in the polymer to the N-scaling be-
havior of the Q1DI model. The Monte Carlo results for
the polymer system presented in Ref. [5] are consistent
with our numerical results for the Q1DI model. Both the
theoretical and the numerical results obtained here un-
derscore the ambiguity of the notion of “length” in
mean-field-like models.

A numerical study of the Q1DI model near its spinodal
line, which corresponds to a ¢3 field theory [11,40], is in
progress. Some preliminary results were reported in Ref.
[27], and a more detailed account is planned to be report-
ed elsewhere [44].

Note added in proof. A review article on finite-size
scaling for systems with long-range interactions by J. G.
Brankov and N. S. Tonchev [Physica A 189, 583 (1992)]
came to our attention after this paper was accepted for
publication. This article discusses mainly systems with
integrable power-law interactions, but also contains addi-
tional useful references to the original literature for
equivalent-neighbor models.
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